skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Vickery, Walker M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Polyurethanes (PU) make up a large portion of commodity plastics appearing in applications including insulation, footwear, and memory foam mattresses. 
    more » « less
    Free, publicly-accessible full text available January 23, 2026
  2. Abstract Bioactive degradable scaffolds that facilitate bone healing while fighting off initial bacterial infection have the potential to change established strategies of dealing with traumatic bone injuries. To achieve this a composite material made from calcium phosphate graphene (CaPG), and MXene was synthesized. CaPG was created by functionalizing graphene oxide with phosphate groups in the presence of CaBr with a Lewis acid catalyst. Through this transformation, Ca2+and PO43−inducerons are released as the material degrades thereby aiding in the process of osteogenesis. The 2D MXene sheets, which have shown to have antibacterial properties, were made by etching the Al from a layered Ti3AlC2(MAX phase) using HF. The hot‐pressed scaffolds made of these materials were designed to combat the possibility of infection during initial surgery and failure of osteogenesis to occur. These two failure modes account for a large percentage of issues that can arise during the treatment of traumatic bone injuries. These scaffolds were able to retain induceron‐eluting properties in various weight percentages and bring about osteogenesis with CaPG alone and 2 wt% MXene scaffolds demonstrating increased osteogenic activity as compared to no treatment. Additionally, added MXene provided antibacterial properties that could be seen at as little as 2 wt%. This CaPG and MXene composite provides a possible avenue for developing osteogenic, antibacterial materials for treating bone injuries. 
    more » « less
  3. Plastic upcycling, which involves making plastic-derived products with unique or improved properties from discarded plastic materials, is a promising alternative to recycling and disposal to help reduce the overall production of waste. However, recycled and reused materials typically have inferior mechanical, thermal, optical, and barrier properties compared with virgin plastics. Upcycled plastic materials could improve these properties while addressing future waste accumulation. In this study, we use waste poly(ethylene terephthalate) (PET) collected from disposable food packaging to create a repurposed plastic graphene oxide (GO) composite with a goal of upcycling. We developed a one-pot “dynamic depolymerization” to break down PET in the presence of GO and successfully enabled transesterification of the polymer onto GO. Covalent attachment of PET onto GO and tailorable plastic content was confirmed by thermogravimetric analysis, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and scanning electron microscopy. These covalent composites (PET-GO) were found to be relatively impermeable to water vapor, showing promise for applications in packaging materials. Aqueous degradation experiments on the composite materials demonstrated that, in bulk conditions, PET-GOs remain mechanically robust while in contact with water over appropriate time scales for packaging applications, while beginning to break down in accelerated conditions. The use of depolymerization methods to promote polymer grafting concurrently with polymer deconstruction could provide a more general method for grafting waste polymers onto oxidized carbonaceous substrates with further study. 
    more » « less